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Abstract

In this work, we investigate the effectiveness of Gener-
ative Adversarial Networks (GANs) and Denoising Diffu-
sion Probabilistic Models (DDPMs) for the task of synchro-
nized talking-head video synthesis using only an identity
frame and an audio clip as inputs. Our goal is to generate
short video sequences with realistic faces while minimizing
additional supervision. We implemented both approaches
and evaluated them in the CREMA-D dataset. Our DDPM
achieved significantly better results, with an FID of 81.68,
which markedly outperformed GANs, which recorded an
FID of 94.26. These findings underscore the robustness of
diffusion-based models in generating high-fidelity, audio-
synchronized facial animation with minimal supervision.

1. Introduction

Animating talking-heads is an important task in film-
making, game development, and virtual reality applications,
and it is traditionally seen as a task that relies on substantial
manual input. However, with the recent advancements in
generative computer vision, producing high-fidelity video
clips featuring talking heads became a key research topic
in the area of conditional generative models. Traditionally,
producing animated clips of talking-heads that are consis-
tent with human perception is a difficult task due to the fol-
lowing three challenges: First, the high-dimensional nature
of facial dynamics [20] makes consistent landmark gener-
ation difficult, second, many models struggle to reproduce
natural motions beyond lip movement, such as blinking and
head movements, and third, most state-of-the-art methods
often require additional supervision to supplement the au-
dio signals in order to generate naturally-looking clips.

In this project, we aim to study the relative strengths

of Generative Adversarial Networks (GANs) and Diffusion
Models on the task of synchronized talking-head synthesis.
Specifically, our goal is to utilize audio containing human
speech and a reference identity frame of the speaker as in-
puts to our models and produce short video clips of talking-
heads while using minimal additional supervision.

Our experimental results demonstrate a clear distinc-
tion between the capabilities of GANs and diffusion mod-
els for this task. While GANs achieved basic lip syn-
chronization, they often suffered from training instability,
limited visual fidelity, and an inability to reproduce nat-
ural head or eye movements. In contrast, diffusion mod-
els—particularly those enhanced with facial landmark con-
ditioning—produced temporally coherent sequences with
sharper visuals and more accurate synchronization. Quan-
titatively, as will be detailed, the diffusion model signifi-
cantly outperformed the GAN across key metrics for visual
quality (FID 81.68 vs. 94.25), audiovisual synchronization
(AV offset: 0.16 vs. –3.48), and perceptual confidence (AV
confidence: 2.44 vs. 2.68). These findings strongly suggest
that diffusion-based architectures provide a more effective
pathway for this domain.

2. Related Works

The problem of talking head video synthesis can be
roughly grouped into two categories: speech-driven syn-
thesis and motion-driven synthesis, and we are mostly in-
terested in the former. Early attempts at capturing correla-
tions between speech and facial features in computer graph-
ics were mostly centered around Hidden Markov Models
(HMMs), with Brand’s Voice Puppetry [2] as well as Xie’s
Coupled HMM [18] being notable pioneers in the field.
However, the advent of Generative Adversarial Networks
architectures [6] has driven the most remarkable progress
in image and video synthesis, and notable speech-driven
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talking-head video generation models such as Prajwal et.
al.’s Wav2Lip [10] and Zhou et. al.’s MakeItTalk [20] all
use the GAN architecture.

However, even though GANs were able to achieve the
state-of-the-art in terms of generation fidelity, past research
have found numerous challenges in GAN training. First,
GANs are optimized using a minimax objective, which is
liable to a phenomenon known as ”convergence failure”
when the discriminator starts to dominate the generator or
vice versa. [1] Second, GANs are also liable to ”mode col-
lapse” (a phenomenon referring to the model’s inability to
generate a wide variety of samples) if the hyperparameters
and regularizers are not chosen carefully. [5]. To address
GAN’s training instability problems, in 2020, researchers
at UC Berkeley proposed a new class of generative mod-
els based on probabilistic Markov chains named ”Denoising
Diffusion Probabilistic Models” (DDPMs). [7] Even though
DDPMs are more computationally inefficient at processing
smaller datasets, more difficult to implement, and slower at
inference as compared to GANs, DDPMs are still favored
over GANs in most generative vision tasks thanks to their
training stability and scalability. [9]

More recent progressions in the field of speech-driven
talking head video synthesis mostly incorporate DDPMs as
the backbone, with examples being Shen et. al.’s DiffTalk
[12] and Stypulkowski et. al.’s Diffused Heads [14]. Our
project directly builds on top of the ideas presented by Shen
et. al. and Stypulkowski et. al. and adapts their model ar-
chitectures to settings where training data and computation
resources may be limited.

3. Datasets

We used the CREMA-D: Crowd-sourced Emotional
Multimodal Actors Dataset for our project. This dataset
contains 7442 short video clips of 91 actors with diverse
ethnic backgrounds speaking short English sentences in a
wide range of emotional states. All video clips in this
dataset consist of an actor speaking in front of a green
screen background. [3]

The original video clips are recorded in a resolution of
360 x 480 and a frame rate of 29.97. A significant problem
we found with these original clips is that the relative po-
sition of the talking head in the frame varies significantly
due to the actors’ hight differences, so we were able to
source a processed version of CREMA-D with the videos
preprocessed to have the talking heads centered within each

cropped 320 x 320 frame. We also adjusted the video fram-
erate to 25 and the audio sample rate to 16,000 so that the
timespan of one frame matches with the timespan of one
audio embedding. Since extracting audio features is not a
focus of our project, we simply used the pre-trained audio
encoder used by Stypulkowski et. al. and Vougioukas et.
al. [16]

During training, we downsampled all video frames to ei-
ther 64 x 64 or 128 x 128 in order to reduce computational
costs. We also extracted facial landmarks from each frame
using the DLib face recognition toolkit. We performed a 90-
10 Train-Validation split on our dataset on the actor level,
meaning the validation set is entirely comprised of clips
with faces that our models have not seen during training.

Figure 1: Sample of video frame and corresponding land-
marks

4. Methods

We implemented two different model architectures for
synchronized talking-head synthesis: a Generative Adver-
sarial Network (GAN) and a Denoising Diffusion Proba-
bilistic Model (DDPM). Specifics of model architectures,
training procedures and hyperparameters will be discussed
in detail below.

4.1. Generative Adversarial Network (GAN)

Our Generative Adversarial Network architecture con-
sists of a pre-processing pipeline, a generator model and a
discriminator model. (Refer to Figure 2 for a schematic of
our GAN architecture.)

To process conditional information, we utilize a pre-
trained ResNet-18 model to generate image embeddings of
identity frames and a pretrained audio encoder to gener-
ate feature vectors of audio segments corresponding to each
frame. These embeddings are concatenated to serve as the
conditional information for the generator. A noise vector
also serves as the input of the generator network.
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Figure 2: Visual schematic for our conditional GAN archi-
tecture.

4.1.1 Generator Network

Our generator is responsible for synthesizing the sequence
of video frames. It contains two major components: an
LSTM to generate feature vectors for each frame to syn-
thesize, and a small upsampling CNN to transform LSTM
features to images.

4.1.2 Discriminator Network

Our discriminator consists of a 3D CNN (with 3D convolu-
tion layers and a final linear prediction head) that serves as
a video classifier. Its job is to determine whether an input
video is real or fake (ie. being generated by the generator.)

4.1.3 GAN Losses

According to [6] and [8], we use the following loss func-
tions for the discriminator LD and the generator LG: 1

LD =− E(xv,c)∼pdata [logD(xv|c)]−
Ez∼pz,c∼pdata [log(1−D(G(z|c)|c))]

LG =− Ez∼pz,c∼pdata [logD(G(z|c)|c)]+
λpixelLL1(G(z|c),xv)

In addition to the adversarial term (a qualitative measure-
ment on whether or not the generator was able to fool the
discriminator), we also introduce a L1 pixel loss for the gen-
erator network LL1 in order to promote generated frames

1xv is the real sequence of the subsequent frames, c is the conditioning
input, z is the noise vector, λpixel is a hyperparameter that represents the
contribution of the pixel loss.

that are similar to the ground truth:2

LL1(G(z|c),xv) =

1

TCHW

T∑
t=1

C∑
c′=1

H∑
h=1

W∑
w=1

|G(z|c)t,c′,h,w − (xv)t,c′,h,w|

4.2. Denoising Diffusion Probabilistic Models
(DDPM)

4.2.1 Mathematical Overview

The forward diffusion process gradually adds Gaussian
noise to the input image, and is defined in terms of a Markov
chain with a pre-defined transition distribution:

q(xt|xt−1) ∼ N(xt;
√

1− βtxt−1, βtI)

Additionally, an equivalent n-step transition distribution
for the forward process can be defined in terms of ᾱt =∏t

k=1(1− βt):

q(xt|x0) ∼ N(xt;
√
ᾱtx0, (1− ᾱt)I)

The reverse diffusion process is another Markov chain with
learned Gaussian transition distributions derived from a
trained denoising neural network, starting with p(xt) =

N(xt; 0, I): [7]

pθ(xt−1|xt) ∼ N(xt−1;µθ(xt, t),Σθ(xt, t))

Our denoising UNet is implemented with the objective
of predicting the noise being added to the image and subse-
quently trained using a simplified MSE objective function
as a proxy to the variational bound: [7] 3

Lmse(θ) = Et,x0,ϵ[||ϵ− fθ(xt, t)||2]

4.2.2 Conditional DDPM for Talking Head Generation

Talking head synthesis is an example of a conditional gen-
eration task. We built our conditional 2D UNet based on
the unconditional architecture in Dhariwal and Nichol. [5]

Motivated by [14] and [12], our UNet implementation
uses two methods of processing conditional information.
Conditional information represented by images (identity

2Where H is the height, W is the width, C is the number of channels
of a single video frame, and T is the number of video frames.

3The original authors used the notation:
Lmse(θ) = Et,x0,ϵ[||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2],

We substituted the equivalent expression for xt for readability and utilize
the notation fθ to emphasize the output of a neural network.
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Figure 3: Visual Schematics for Conditional 2D UNet

and motion frames) is fused with the noisy input by stacking
along the channel dimension, while conditional information
represented by embedding vectors (audio and landmarks)
are injected into the UNet’s residual blocks alongside with
timestep embeddings. Concretely, given the hidden units x
before the ”injection”, we use an MLP to learn the modula-
tion parameters for embedding z, and we produce

x′ = zs · Norm(x) + zb, where (zs, zb) = MLP(z)

as the modulated hidden units. A visual representation of
our UNet architecture is presented in Figure 3.

In addition to the simple MSE loss, we leveraged the ex-
tracted facial landmarks to penalize the model’s deviation
from ground truth noise in the mouth region to promote bet-
ter lip movement emulation. The penalty is implemented as
a weighted MSE loss: The mouth region is weighted by 1.2
while the rest of the image is weighted by 1.0. [14].

4.2.3 Model Configuration and Hyperparameters

We decided to directly utilize the UNet architectures pro-
posed by Dhariwal and Nichol. [5] Our implementations use
SiLU activation and GroupNorm normalization, see table 1.

Compared to Dhariwal and Nichol’s original architec-
ture, we made the following adjustments in accordance with
[12] and [14]:

1. Cosine noise scheduler with 250 diffusion steps during
training for both resolutions.

2. Batch size adjusted to fit into GPU memory.

3. Learning rate set to a constant 5e-5 for both resolu-
tions.

4. Spatial self-attention modules only used in the middle
block and not in up/down sampling blocks.

In terms of hardware, initial model development was
performed with an AMD Radeon Pro 5600M GPU (8
GB), while model training was performed on a GCP node
equipped with an Nvidia L4 GPU (24 GB). Both of our 64 x
64 and 128 x 128 models were trained for 200 Epochs. (To-
taling 5 GPU days) The 128 x 128 model also incorporates
landmark conditioning as a part of our experimentation.

4.2.4 Sampling and Inference

Given that the generation process for a DDPM is formulated
as an iterative denoising process, generating a single frame
would take a significant amount of time. Two widely used
strategies for speeding of the inference process of DDPMs
include diffusion timestep spacing and the Denoising Dif-
fusion Implicit Models (DDIM) inference pipeline. [13] We
incorporated both in our implementation process, and we
mostly used 50 diffusion steps in inference.

Resolution 64 128
Base Channels 192 256

Ch. Multiple [1,2,3,4] [1,1,2,3,4]
# Res. Blocks 3 2

Attn. Heads 8 4
Conv. up/down True True

Dropout 0.1 0.0
# Parameters 294 Million 470 Million

Table 1: UNet Architectures for DDPM
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Figure 4: Loss Evolution of the Discriminator and Genera-
tor Models During Training

Our model generates each frame sequentially and uses
the previously generated frame as the motion frame to gen-
erate subsequent frames. One major downside of this design
choice is that the quality of generated frames would gradu-
ally degrade.

5. Experimentation, Results & Discussion

5.1. GAN: Experiments

We will begin by presenting the plots of the training and
validation losses for both the generator and discriminator.
Although these plots provide a general sense of the model’s
behavior, they are not very informative on their own. To
address this, we added a third loss plot, the pixel loss plot,
which is the second part of the generator loss that represents
the L1 distance between the generated pixels and the ground
truth pixels, offering a more meaningful measure of image
quality.

Referring to Figure 4, we see that our discriminator
dominated the generator throughout the entire training pro-
cess. Moreover, the loss with respect to the generator de-
creased until epoch 60 and started to increase afterwards,
which means that the network was suffering from a non-
convergence issue as the discriminator completely domi-
nates the generator. Pixel loss presented in Figure 5 is also
consistent with this phenomenon, as it started to diverge af-
ter epoch 60. In addition, we can see that the validation
pixel is much noisier than the training loss, and this is be-
cause we don’t have many samples in our validation set.

Another useful metric we used to evaluate GANs at train-

Figure 5: Loss Evolution of the Generator Pixel Loss

Figure 6: Train and Validation SNRs

ing time is the Signal-to-Noise Ratio (SNR) between gener-
ated frames and ground truths. Again, Figure 6 is consistent
with our existing observations: SNR improved until epoch
60, and then declines due to the generator’s outputs becom-
ing noisier and less accurate.

In terms of qualitative observations, our GAN models
can only produce videos with mouth movements. The fail-
ure to emulate head motions motivated us to experiment
with DDPMs in our talking head generation task.

5.2. DDPM: Experiments

5.2.1 Initial Modeling and Experiment Proposals

We present the loss evolution for our base 642 diffusion
UNet in Figure 7. Two loss characteristics stood out to us.
First, the lack of significant gap between training and vali-
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Figure 7: Loss Evolution of Base Diffusion Model (Resolu-
tion : 64)

0 Epoch (Base) 50 Epoch 100 Epoch
MSE 3.450 2.970 2.310
Lip 8.816 6.940 5.826

Table 2: Validation Losses During Model Finetuning
(×10−3)

dation losses during the entire training process indicates the
model’s similar denoising performance on both training and
validation images. Second, there is a significant difference
between unweighted MSE loss and Lip loss, meaning that
the model is struggling to capture fine-grained facial details
of the actors. Lip loss also converged at a slower rate com-
pared to unweighted MSE.

We proposed two experiments aimed at improving the
model’s ability to capture finer facial details. First, we in-
creased our image resolution to 1282 so that the amount of
information loss due to image downsampling is reduced.
Second, we increased the amount of supervision that en-
couraged the model’s adherence to facial feature consis-
tency by injecting landmark information during training.
We present our findings below.

5.2.2 Increasing Image Resolution via Finetuning

Partially motivated by the training approach utilized by the
Stable Diffusion model [11], we decided to directly fine-
tune our 642 base model on 1282 images. This fine-tuning
experiment lasted for 100 epochs, and some checkpointed
validation losses are presented in Table 2.

Even though the loss characteristic suggests that our fine-
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Figure 8: Loss Evolution of 1282 Diffusion Model with
Landmark Conditioning

tuning diminished the gap between Lip loss and unweighted
MSE, our qualitative analysis showed that the quality of
generated frames significantly decreased. We hypothesize
that the model’s failure to generalize to higher resolutions
may be due to the following:

1. The massive differences in 642 and 1282 models ar-
chitectures used by [5] suggest that our base model
may be ill-suited to process image features in the 1282

space. (eg. too few model channels)

2. Generating talking faces relies heavily on specific im-
age features that are spatially aligned. Fine-tuning an
existing model on higher resolution likely broke the
spatial alignment of the features that the model has al-
ready established. The upsampling network may be-
come confused about where to put the mouth, eyes etc.

5.2.3 Adding Landmark Conditioning to 1282 Models

As an effort to improve the generation quality for 1282,
we again adapted the UNet model architecture from [5]
and made modifications according to [14] and [12]. This
model is also trained with added landmark conditioning.
Compared to our base model, the gap between the Lip loss
and unweighted MSE is significantly reduced for the 1282

model. 8
On the other hand, according to generated samples pre-

sented in Figure 9, the model is able to generate about 5
frames with consistent facial features and lip movements.
However, further frames shows stopped lip movement and
gradually increasing brightness.
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Figure 9: Generated samples from 1282 model with land-
mark conditioning
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Figure 10: Relative Strength of Conditioning Signals

Two design choices we made in our modeling meth-
ods could potentially contribute to this model’s strange be-
haviors: First, the number of normalization layers in the
UNet’s residual blocks may be insufficient, 4 which may
have caused the UNet to slightly amplify the pixel mag-
nitudes in its predicted noise. This amplification behavior
may be too minuscule to be captured by the MSE losses, but
it is stacked though the iterative denoising process and cre-
ates a feedback loop in the model’s inference pipeline. Sec-
ond, the two control signals being injected into the model
do not share the same data modality and thus the underlying
embedding distribution, which prompts the phenomenon of
control conflicts in the facial region.

To determine the possibility to control conflicts, we gen-
erated two test frames with only one control signal given
to the model and used the relative pixel magnitude of out-
put frames to determine the strength of each control sig-
nal. We saw that lankmarks completely dominated audio
embeddings in controlling relative head position and facial
feature alignments. 10

4There are 2 normalization layers within each residual block, but three
feature injection operations are performed.

6. Comparing Results

For subsequent studies and evaluations, we elected our
base model (642 resolution) checkpoint at 175 epoch as our
candidate model based on the criterion of validation loss
minimization.

To evaluate the video quality using quantitative metrics,
we use Fréchet Inception Distance (FID), which passes the
real and generated frames into a pretrained Inception-v3
model and captures the distance between the corresponding
feature distributions of the frames. Realistic motion of the
generated videos is evaluated using average Optical Flow
Magnitude (OFM), which takes the average magnitude of
the displacement of pixels between consecutive frames us-
ing one channel (grayscale), as required by Farneback, and
uses parameters for OpenCV’s calcOpticalFlowFarneback
as defined in the DiffusedHeads paper [14]. Similarly, to
measure the smoothness between frames in a given video,
the Frame-wise Mean Square Error (F-MSE) is used, which
averages the mse loss across pixels in consecutive frames
acrosss all three color channels. We use AV Offset, which
is pretrained on the audio-to-video synchronisation network
SyncNet [4] to quantitatively measure the difference in time
between lip movement and audio. For reference, an AV
Offset score of 0 indicates that the lip movement and au-
dio are perfectly synced, while a negative score and positive
score, respectively, mean the generated video is lagging or
ahead of the audio. AV Confidence indicates the confidence
level of a corresponding AV Offset score from the SyncNet
model.

6.1. GAN vs Diffusion Model

Although we could not compete with the DiffusedHeads
baseline due to computation and cost constraints, we still
saw that our diffusion model, although trained on lower res-
olution (64x64), outperformed the GAN model (128x128)
in both video quality (FID, OFM, F-MSE) and audio-video
synchronization (AV Offset, Confidence). The GAN has a
large AV offset of -3.48 and a large confidence level which
indicates the GAN model is confidently wrong to generate
the lagging videos, on average, behind the audio. How-
ever, because GAN produced blurry frames, it may have
confused the SyncNet model’s AV offset calculation. The
blurriness may have also impacted OFM computation as the
GAN model produced a similar OFM score to that of the
DiffusedHeads model, even though qualitatively our diffu-
sion model outperformed the GAN. In addition, the evalua-
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tion of the OFM and F-MSE score is dependent on the frame
resolution. Thus, the OFM and F-MSE scores on 64x64 res-
olution cannot be compared to that of 128x128. The eval-
uation of these scores are shown separately in Table?? and
divided by resolution.

6.1.1 Effect of Diffusion Steps at Inference

To investigate the effects of reverse diffusion steps on gen-
eration quality, we compared videos generated with 20, 50,
and 100 steps using the DDIM pipeline qualitatively and
quantitatively. In terms of visual quality, we saw that 50
diffusion steps produced the most realistic and consistent
videos, while 20 diffusion steps may sometimes produce
talking faces with ill-defined and misaligned facial features.
Interestingly, increasing the diffusion steps from 50 to 100
actually reduced the visual fidelity of generated frames. The
quantitative results in Table 5 are consistent with our qual-
itative inspections of Figure 13, specifically that the best
video quality, as is captured by FID, is produced at 50 diffu-
sion steps. F-MSE scores across steps were relatively simi-
lar across diffusion steps, while FID and AV confidence had
more variability. Our diffusion model’s small AV Offset of
0.16 at 50 diffusion steps demonstrated it was the most au-
dio synced option and furthermore had a highest confidence
score in this quantitative assessment. (More in-depth Com-
parison samples are included in the appendix.)

7. Conclusion and Future Works

In this project, we experimented Generative Adversarial
Networks (GANs) and Diffusion Models (DDPMs) on the
generative computer vision task of talking head synthesis.
We implemented our bespoke GAN network architecture
and adapted an existing denoising UNet architecture to our
task by combining two methods of conditional signal pro-
cessing. In our analysis, we also showed that using 50-step
DDIM sampling method during inference achieves the best
balance between computational efficiency and sample qual-
ity. Our best performing model is not only able to produce
talking head animations with accurate lip sync but also can
emulate head movements of the talking subject.

Despite the overall results of our models, our findings
call for further work. For instance, we wish to increase the
capacity of the generator network in our GAN so that the
non-convergence issue and discriminator dominance could
be addressed, and we could implement conditional signal

combination strategies that avoid control conflict, such as
Diffusion Mamba (DiM). [15] Moreover, harnessing so-
phisticated loss metrics, such as such as Learned Perceptual
Image Patch Similarity (LPIPS) [19] and identity preserv-
ing losses, would improve the overall generation quality.
Finally, Finally, our dataset only contains 91 different face
identities and has a limitation of green backgrounds, which
inhibits our models to generalize to generic faces and iden-
tities. We believe background data augmentation and more
diverse datasets such as MEAD [17] and Lip Reading in
the Wild (LRW) [4] could help with generalization perfor-
mance.

Model FID ↓ AV Offset AV Conf. ↑

GAN (128x128) 94.255 -3.48 2.682
Diffusion (64x64) 81.682 0.16 2.436
GT (64x64) 0 0.88 3.306
Baseline: DiffusedHeads 49.03 0.88 2.91

Table 3: Quantitative metrics of GAN vs Diffusion (note:
DiffusedHeads metrics were normalized to our scale by the
ratio of the respective ground truth of the resolution used)

Model/Resolution OFM F-MSE ↓

GAN (128x128) 0.680 31.688
Baseline: DiffusedHeads (128x128) 0.643 6.99
GT (128x128) 0.690 7.76

Diffusion (50 steps, 64x64) 0.342 37.014
GT(64x64) 0.534 54.433

Table 4: OFM and F-MSE Analysis (relative to 64x64 and
128x128 resolution comparison)

# Steps FID ↓ OFM F-MSE ↓ AV Offset AV Conf. ↑

20 84.968 0.338 37.887 -0.28 1.895
50 81.682 0.342 37.014 0.16 2.436

100 88.366 0.343 37.872 -0.32 2.061

GT 0 0.534 54.433 0.88 3.306

Table 5: Quantitative metrics diffusion models with differ-
ent number of DDIM inference steps on 64x64.
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8. Appendix

Exhibition of Generated Samples

Figure 11: Comparison Between our GAN candidate and Diffusion candidate, Sample 1

Figure 12: Comparison Between our GAN candidate and Diffusion candidate, Sample 2

Figure 13: Qualitative Analysis of Diffusion Steps for First Frame
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